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Abstract
A method is developed to obtain solutions of Einstein field equations for 
anisotropic charged spheres. This procedure needs to choose a linear 
relationship between energy density and radial pressure and a metric 
function proposed for Buchdahl (1959). A new class of solution is obtained 
and subjected to several physical analyses for realistic models of compact 
stars. The new solutions in this research are physically reasonable, well-
behaved in the interior of the star, which indicates that these new models 
satisfies important physical conditions as the measure of anisotropy and 
matching. The models are consistent with the upper limit on the mass 
of compact stars for PSR J1823-3021G, PSR J1748-2446an and PSR 
J1518+4904. 
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Introduction
The phenomena of supernovae stars giving birth 
to strange stars through gravitational collapse has 
motivated a number of researchers to explore the 
geometry of stellar inner portions.1-2 In general 
relativity the Einstein field equations are useful 
in examining the physical characteristics and 
gravitating behaviours of some known stellar objects 
such as the star remnants.3-5 The essence of these 
models show that the field equations are useful and 
applied as tools to provide results with astrophysical 
significance.6-18

One of the groundbreaking developments in the  
theory of general relativity was made by Schwarzs-

child3 who derived the first solution to Einstein’s 
field equations. This solution has been crucial in 
understanding the behavior of massive objects and 
their interaction with gravity and has allowed to 
obtain Einstein's original cosmological solutions for 
a uniform distribution of fluid.

Modeling compact stellar objects has become a 
popular and important endeavor to explore various 
characteristics including their mass, charge, 
structure and stability.19 Some reasonable physical 
stellar models can be proposed with various state 
equations as the linear equation of state,20-26 quadratic  
equation of state,27-30 polytropic equation of state31-32 
and Van der Waals equation of state.33-34
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The study of anisotropy pressure in stellar objects in 
the presence of strong gravitational fields is a topic 
of fundamental importance for many researchers in 
astrophysics. Sokolov18 states that phase transitions 
are determinants in the evolution of neutron stars. 
The presence of an electrical field is also a cause 
of anisotropy.19 Bowers and Liang6 indicate that 
the presence of anisotropy can modify the structure 
of compact objects. Herrera11 concludes that the 
pressure anisotropy influences matter stability due 
to the appearance of radial forces of different sign 
in the stellar interior causing a disturbance in the 
system balance. Thirukkanesh and Ragel35 state 
that anisotropy influences the structure and some 
physical parameters of compact stars such as mass 
and compactness. Moreover, there exist a number of 
research studies that have come up with anisotropic 
models ( Takisa and Maharaj,31 Thirukkanesh and 
Ragel,32 Malaver,33-34 Thirukkanesh and Ragel,35 Mak 
and Harko,36 Malaver and Iyer).37

Malaver and researches38 have discussed the effect 
of electromagnetic fields on compact stellar bodies 
in a Buchdahl space time. Malaver, Iyer, and Khan39 
have determined some physical characteristic in 
the framework of Einstein-Gauss-Bonnet gravity 
for compact stellar objects with the metric potential 
proposed by Buchdahl. Iyer40-41 has recently 
published many papers as well as presentations on 
the importance of Rank-n tensor time quantifying 
gravity in quantum states with gravity and tensor 
time metrics. In these studies, the gradation of time 
tensors from rank-6 to rank-1 vectors in spacetime 
presents a novel approach to unifying General 
Relativity (GR) and Quantum Relativity (QR).
 
The main purpose of this study is to obtain a new 
variety of explicit solutions of Einstein field equations 
with a metric function proposed by Buchdahl42 and 
considering the existence of pressure anisotropy. 
In section 2 are shown the field equations and 
boundary conditions that describe the gravitational 
behavior of the astrophysical objects and the 
solutions for the Einstein field equations are given by 
in Section 3. In Section 4, are discussed the physical 
conditions that must have a charged star and the 
physical analysis of particular cases are given in 
Section 5. Finally in Section 6, we conclude that the 
proposed model describes a charged stable star and 
that the matter variables can contribute to the study 
of stellar structure.

Einstein Field Equations
We considered a distribution of matter with spherical 
symmetry whose stress tensor is locally anisotropic. 
The metric in a star in Schwarzschild coordinates will 
be described by the simple form 

 	 ...(1)

with λ and ν functions of r only, as in the case of any 
static and spherical symmetric distribution of matter. 
The Einstein-Maxwell field equations given by

 	 ...(2)

 	 ...(3)

 	 ...(4)

The quantities ρ , rP , tp  and E refer to as energy 
density, radial pressure, tangential pressure and 
electric field, respectively. The basic field equations 
(2)-(4) are transformed to find the solution to the 
Einstein field equations with the transformations, 
x=cr2, Z(x)=e-2λ(r) and A2 y2 (x)=e-2v(r) with arbitrary 
constants A and c>0, suggested by Durgapal and 
Bannerji.43 The metric (1) can be expressed as

 	 ...(5)

and Einstein field equations are written as follows

 	 ...(6)

 	 ...(7)

 	 ...(8)

∆+= rt pp  	 ...(9)

 	 ...(10)

 	 ...(11)

σ is the charge density and dots in system of equations 
(6)-(11) stand for derivatives with respect to x. With 
the transformations of Durgapal and Bannerji,43 the 
mass within a radius r for the realistic stellar body  
is given by for                 
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 	 ...(12)

Matching of the exterior and interior of the compact 
object at the boundary (r = R) is done by comparing 
the line element (1) with Reissner-Nordstrom exterior 
spacetime.

 	
...(13)

In this paper, we assume the following lineal equation 
of state 

 	 ...(14)

Materials and Methods
To be able to solve the system (6)-(11) we have 
taken the metric potential Z(x) of  Buchdahl42  and 
for the electric field the proposal of Lighuda and 
researches,44 respectively

                                                                                                                  ...(15)

 	 ...(16)                                                                                                                                    

where K is a parameter related to the geometry of 
the star and a is a real constant. The metric potential 
Z(x) is continuous at the centre of the star and well 
behaved in the interior of the star. The electric field is 
finite at the center of the star and remains continuous 
in the interior.

Substituting (15) and (16) in (6) we obtain

 	 ...(17)

we have for the radial pressure

 	 ...(18)  

Using (17) in (12), the expression of the mass 
function is

 	
...(19)

With (15) and (16) in eq. (11), the charge density is

 	 ...(20)

With (15), (16) and (18), the eq. (7) becomes
 	
...(21)        

Integrating (21), we obtain
 	

...(22)
where for convenience 

 	 ...(23)

 	 ...(24)

 	 ...(25)

The metric functions can be written as

 	 ...(26)
 	

...(27)

The anisotropy factor ∆ is given by for 

 	
...(28)

Physical Requirements 
Any physically acceptable solution must satisfy the 
following conditions,32,45

(i)	 The gravitational potentials e2λ and e2v are  
functions that take finite and positive 
values along the radial coordinate and  are 
continuous throughout the stellar interior.

(ii)	 The energy density ρ decreases continuously 
from the centre r=0 and becomes zero at the 
surface r=R. 

(iii)	 The radial pressure Pr must be finite at the 
centre and it must vanish at the surface of the 
sphere.

(iv)	 The radial pressure and density gradients    
 and  for 0 r R≤ ≤ . 

(v)	 The anisotropy is zero at the center r=0, i.e. 
Δ(r=0) =0.    

(vi)	 Any physically acceptable model must satisfy 
the causality condition, that is, for the radial  
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	 sound speed , we should have 20 1srv≤ ≤

(vii)	 At the surface of the star the charged 
interior solution should be matched with the 
Reissner–Nordström exterior spacetime (13). 

Results and Discussion 
For the new solutions, the gravitational potentials  
e2λ and e2v have finite values and are continuous 
throughout the stellar interior, this is in agreement 
with the result by Sunzu, Maharaj and Ray.26 At 
the center e2λ(0) = 1 and e2v(0) = A2 c1

2 K2A e2C. We 
show that in r=0,(e2λ(r))' r=0 = (e2v(r))' r=0 = 0 and this 
makes is possible to verify that the gravitational 
potentials should be finite at the center and avoid 
the singularities within the stellar interior.

The energy density ρ and radial pressure rP  are 
decreasing functions with maximum values at the

centre of the star. In the center ( ) ( )
K
Kcr 130 −

==ρ  and

( ) ( )
K

KcrPr
10 −

== , therefore the energy density will be 

non-negative in r=0 and ( )0=rPr ˃ 0. In the surface of 
the star ( ) 0== RrPr and for the second fundamental 
form we have

 	 ...(29)

Gradients    and   acquire negative values with 

the radial parameter.  For 0 r R≤ ≤

 	
...(30)

 	
...(31)

According equations (30) and (31) the pressure and 
density diminish in the stellar interior and vanishes 
on the surface of the star. The solution for r=R must 
match the Reissner–Nordström exterior space–time 
as:

and therefore, the continuity of eν  and eλ  across 
the boundary r=R  is

 	 ...(32)

Then for the matching conditions, we obtain:  

 	 ...(33)

Table 1 contains the values of a, K and masses for 
different stars in r=R

Table 1: Values of  K, a and  M(Mʘ) in r=R

K	 a	 M(Mʘ)

6	 0.0002	 2.71
8	 0.0002	 2.87
10	 0.0002	 2.96

Mʘ = sun’s mass

The figures 1,2,3,4,5,6,7,8 and 9 represent the plots 
of λ2e , ν2e , ρ , rP  , , , M , 2σ   and Δ with the radial 

coordinate. For all the plots c=1.

Fig. 1: Metric potential e2λ versus the stellar 
radius  for K=6  (solid line), K=8  (long- dash 
line) and K=10 (dash-dot line) with a=0.0002.
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Fig. 2: Metric potential e2λ  versus the  stellar 
radius  for K=6  (solid line), K=8  (long- dash 
line) and K=10 (dash-dot line) with  a=0.0002.

Fig. 3: Energy density ρ versus the stellar 
radius for K=6 (solid line), K=8 (long- dash 

line) and K=10 (dash-dot line) with a=0.0002.

Fig. 4: Radial pressure rP  versus the stellar  
radius for K=6 (solid line), K=8 (long- dash 

line) and K=10 (dash-dot line) with a=0.0002.

Fig. 5: Energy density gradient versus the 
stellar radius for K=6 (solid line), K=8 (long- 

dash line) and K=10 (dash-dot line) with  
a=0.0002.
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Fig. 6: Radial pressure gradient versus the 
stellar  radius  for K=6 (solid line), K=8 (long- 

dash line) and K=10 (dash-dot line) with 
a=0.0002.

Fig. 7: Mass function versus the stellar radius  
for K=6 (solid line), K=8 (long- dash line) and 

K=10 (dash-dot line) with a=0.0002.

Fig. 8: Charge density 2σ  versus the stellar 
radius for K=6 (solid line), K=8 (long- dash 

line) and K=10 (dash-dot line) with a=0.0002.

Fig. 9: Anisotropy versus the stellar radius for 
K=6 (solid line), K=8 (long- dash line) and K=10 

(dash-dot line) with a=0.0002.

For different values of parameter K, the gravitational 
potentials e2λ (Figure 1) and e2v (Figure 2) are 
monotonically increasing function with the radial 
distance, continuous throughout the stellar interior 

and takes higher values when K is increased. The 
energy density from Figure 3, is observed to be 
maximum at the star core. It decreases as the 
radial distance increases for all the values of K. 
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This indicates that the model is physically realistic 
as we expect the maximum value of energy at the 
centre as observed by Sunzu, Maharaj and Ray.26 
The radial pressure is also a decreasing function 
with radial coordinate with the maximum at the 
centre as a noted in Figure 4. The radial variation of 
energy density gradient has been shown in Figure 5,  
in which it is observed that < 0 in all the cases studied.  
In Figure 6 is also shown that the profile of   
indicates that the radial pressure gradient is negative 
inside the star. In Figure 7, the mass of the stellar 
body increases monotonically from the centre 
to the surface for different values of K. It is also 
physically realistic for well behaved models.24 The 
charge density is a continuously decreasing function 
as noted in Figure 8. The measure of pressure 
anisotropy Δ in Figure 9 shows that it is finite, regular, 
continuous, and increasing from the core of stellar 
object, reaches a maximum and then decreases near 
the surface. We can also note that Δ admits higher 
values with a growth of K.

We can compare the values calculated for the mass  
function with observational data of some astrophysical 
objects such as for PSR J1823-3021G, PSR J1748-
2446an and PSR J1518+4904.46-48 The values of the 
stellar masses for these compact stars are tabulated 
in Table 2.

Equations and the Schwarzschild metrics to explain 
the gravitational interaction in terms of spacetime 
curvature. To validate theoretical framework of 
rank tensor gradation and metric wave functionality, 
many experimental approaches have been 
advanced to proposals,48-60 including high-energy 
particle collisions, gravitational wave observations, 
quantum entanglement experiments, astrophysical 
observations, and laboratory simulations.

Conclusion
This study included a choice of generalized 
metric function which has regained some choices 
made by previous researchers.39 Moreover, the 
developed model was observed to be regular. 
That is, the potentials are above zero at the 
centre of a star showing that the model is regular. 
The proposed models can be compared with the 
pulsars PSR J1823-3021G, PSR J1748-2446an 
and PSR J1518+490443-44 and well behaved.  
Quantifying gravity in quantum states with gravity 
and tensor time metrics presents a novel approach to 
unifying General Relativity and Quantum Relativity. 
Astrophysical regions would demonstrate a rank2 
tensor using Einstein’s Field Equations and the 
Schwarzschild metrics to explain the gravitational 
interaction in terms of spacetime curvature. Many 
experimental approaches such as high-energy 
particle collisions, gravitational wave observations, 
quantum entanglement experiments, astrophysical 
observations, and laboratory simulations have 
promising advances to find signatures of the 
quantum interior with astro exterior of these compact 
stars, especially pulsars.50-60
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Table 2: The approximate values of 
the masses for the compact stars

Compact Star	 Masses M(Mʘ)

J1823-3021G	 2.65
J1518+4904	 2.72 
J1748-2446an	 2.97

The recently discovered pulsar PSR J1823 3021G 
is known to be part of a binary system and has the 
potential of being one of the most massive known 
pulsars.47 The same is noted with the binary pulsar 
PSR J1748-2446an which is a massive system 
that exceeds 2Mʘ.48 Iyer40-41 has outlined a method 
to quantize the gravitational field by examining 
the gradation of rank tensors within a metric 
wavefunction framework. Astrophysical regions 
would demonstrate a rank2 tensor, analogous to 
Schwarzschild metrics, by analyzing Einstein’s Field 
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