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Abstract
The industrial induction motor-driven belt conveyor is an essential 
component in manufacturing facilities. Any unexpected shutdown can lead to 
significant disruptions, resulting in financial losses amounting to thousands 
of dollars per hour. Unfortunately, efficient mechanisms for monitoring the 
conveyor's condition are often lacking. Therefore, it is crucial to ensure 
early, precise, and effective detection of malfunctions in belt conveyors. 
This necessitates the identification of distinctive anomalies stemming 
from initial damage to the rotating machinery and motor components. This 
paper presents a non-invasive acoustic monitoring technique designed 
specifically for industrial belt conveyors. The method employed relies on 
wavelet transform-based feature extraction, offering notable advantages in 
terms of classification accuracy, time efficiency, and the quantity of feature 
vectors required for classifier training.
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Introduction
Industrial conveyor systems are pivotal mechanical 
assemblies designed for the effortless transportation 
of materials. These systems typically consist of a 
supportive frame, driven by an induction motor, 
on which a belt carries materials from one location 
to another.1 The significance of conveyor systems 
in industries, such as mining and manufacturing, 
cannot be overstated, as they are responsible for 

the transport of vast quantities of bulk materials and 
products over considerable distances. However, 
the complexity of belt conveyor systems, coupled 
with the often-reactive nature of maintenance 
procedures, results in substantial financial losses 
amounting to thousands of dollars per hour when 
a conveyor belt system fails. The root cause of this 
issue is the absence of efficient mechanisms for 
monitoring the condition of these systems. Acoustic-
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based condition monitoring presents an appealing 
solution due to its convenience, cost-effectiveness, 
non-invasive, and real-time information acquisition 
attributes.2 Signal preprocessing can reveal non-
stationary points, seasonal specifications, and 
specific information in the time and frequency domain. 
The Wavelet method is a well-known technique that 
could be used as a signal preprocessing method.3 
Furthermore, by employing a wavelet transform (WT) 
based extraction algorithm, the accuracy of fault  
detection can be significantly enhanced.4 This paper 
introduces a novel approach known as the WCE 

ratio (WCER) feature extraction method for effective 
belt conveyor system monitoring, as in Fig. 1.  
The performance of this approach is rigorously 
evaluated, comparing it to other techniques like the 
wavelet coefficient (WC) feature extraction method 
and FFT-based methods. Diverging from traditional 
spectral-domain or time-domain approaches, the 
WT-based method enables the extraction of features 
from both time- and wave-spatial information, which 
are subsequently amalgamated to train a classifier, 
ultimately improving the overall classification 
accuracy.

Fig. 1: The proposed method for extracting wavelet transform features 
from acoustic signals follows this flow:

Wavelet Coefficients Energy Ratio based Feature 
Extraction Method
Wavelet transform emerges as a highly promising 
signal processing technique with diverse applications 
encompassing data analysis and denoising.5 It 
contains essential information regarding time and 
scale distribution aspects, effectively representing 
signal components within distinct frequency bands. 
This distinctive feature facilitates the differentiation  
of signals associated with different targets. In 
contrast to Fourier series expansion, which 
predominantly offers frequency resolution while 
neglecting time resolution, wavelet transform excels 
by providing information concerning the respective 
time-spatial location and frequency wavenumber.6 
This, in turn, enables localized analysis within time-
scale domain or the time-frequency.7 The essence of 
wavelet transforms lies in its ability to decompose a 
signal into a set of wavelets, thus yielding a valuable 
time-frequency representation of the signal.8 
Wavelets are characterized by their irregular shape 
and finite duration, rendering them particularly adept 
at analyzing signals with variable spectral content 
and transitory characteristics.8 Utilizing a set of base 
functions,9 wavelet transform dissects a signal into 
a family of wavelet coefficients. These coefficients 
provide a comprehensive signal time-frequency 

representation. The continuous wavelet transform 
(CWT) for a continuous signal is defined as;

 	 ...(1)

where Ψ(t) is the mother or basic wavelet with a 
bandpass function,10 a is the scale factor, and b is 
the time shift. In this paper, decomposing the signal 
involves using a smaller among of scales, each with 
a varying amount of translations. This approach 
helps avoid a large redundant information compared 
to continuously varying the parameters.

Fig. 2: Three-level wavelet decomposition 
Haar Wavelet function
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Fig. 2 illustrates a three-level wavelet decomposition 
scheme using the Haar discrete wavelet transform 
(DWT). Here, X(t) represents the signal sequence. 
Lp and Hp are the (p − 1)th level orthogonal filter 
bank coefficients in the wavelet decomposition 
processing. For the low-frequency components, 
the term ap(t) denotes the pth level wavelet 
approximation coefficients. Similarly, for the high-
frequency components, dp(t) denotes the jth 
level wavelet detail coefficients. The formula for 
calculating the wavelet coefficients dp(t) is given as:

 	
...(2)

where  is a convolution operation; t = 1, 2, T. The 
term T is the signal sequence length, with p = 1, 2, …, 
P, where P denotes the depth of the desired wavelet 
composition, which is the number of levels in the 
function, each level of decomposition increases the 
level of detail captured in the signal representation, 
with higher levels capturing finer details but requiring 
more coefficients to represent the signal accurately.2 
Considering the nature of the signals analyzed 
here is mainly of low-frequency components, fewer 
levels of decomposition may prove adequate. Given 
that the wavelet coefficients represent various 
frequency-bands within the acoustic signal, they 
inherently have distinct characteristics that prove 
invaluable for extracting spectrum features for 
condition monitoring. The variation in spectra leads 
to differences in the energy of signal components 
across these diverse frequency bands, consequently 
affecting the energies of the coefficients themselves. 
The WCER serves as a metric to quantify these 
differences, reflecting the variance in energy levels 
among the coefficients. This, in turn, becomes a 
critical indicator for assessing and monitoring the 
condition of the system. It can show the signal 
energy variation across each frequency-band 
expressed as:

	 ...(3)

where p is the desired depth of the wavelet 
transform, E_wc (p) denotes the pth wavelet 

coefficient energy (WCE), L denotes the length of the  
wavelet coefficient(WC) and signal sequence. Once 
WCER(p) is obtained, the target signal feature vector 
can be computed as:

	 ...(4)

And the extracted feature matrix of the acquired 
signal is expressed as:

	 ...(5)
Experimental Setup
In this study, a commercial acoustic sensor (SR40M) 
was installed beneath the frame supporting the 
conveyor belt to capture acoustic signals, as in Fig. 3.  
The malfunctioning condition was introduced by 
replacing a roller on the belt conveyor that had a 
minor lack of lubrication. The sensor recorded these 
signals at 44,100 Hz sampling rate. The signals 
were generated by the conveyor system under both 
normal and malfunctioning conditions, with each 
condition lasting for a duration of 20 seconds. This 
resulted in the acquisition of data sequences, each 
containing 1,764,000 data points. To facilitate the 
subsequent analysis, we employed a segmentation 
approach with a fixed segment length (L) of 512 
points. This means the acquired signal sequence 
was separated into 3,445 segments, and every 512 
points forming an individual segment for feature 
extraction. In essence, the data sequence was 
broken down into consecutive segments, where the 
first segment spanned from point-1 to point-512, 
and the second segment spanned from point-513 
to point-1,024, and so forth, thus allowing for a 
comprehensive analysis of the entire data sequence.

Following this, the obtained acoustic signal from the 
conveyor belt underwent processing by the feature 
extraction module utilizing the WC and WCER. The 
depth of the wavelet transform was configured to 
100.
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Fig. 3: Image of the belt conveyor along with the 
location of the installed acoustic sensor (inset).

Fig. 4: Acoustic signal and wavelet transform coefficient of the belt conveyor system 
running under(a)normal condition and (b) malfunctional condition

Fig. 5: WC features extracted from the belt conveyor system running under 
(a)normal condition and (b) malfunctional condition
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Fig. 4 shows the acoustic signals acquired from 
acoustic sensor and their corresponding wavelet 
transform domains under both normal and 
malfunctional runs of the belt conveyor. Fig. 5 shows 
the extracted acoustic signal features using the WT 
method. Additionally, Fig. 6 shows the characteristics 
derived from the WCER method-based segmented 
acoustic-signal sequence. The horizontal axis 
denotes the signal segment number, akin to a 
compilation of observations for specific feature 
variables. Conversely, the vertical axis illustrates 
the WCER values that relate to the segments of the 
signal. Notably, the differences in WCER features 
between the normal and malfunctional conditions 
are more pronounced compared to those in WC 
features. This heightened distinction in WCER 
features provides a clearer reflection of the target's 
characteristic variations.

Feature Vector Simplification using Principal 
Component Analysis Method
In this study, we employed the Principal Component 
Analysis (PCA) method11 to condense the feature 
matrix by isolating key factors that play a crucial 
role in signal differentiation. Simplifying the feature 
vectors by removing redundant variables can 
significantly decrease computational complexity 
and effectively reduce data processing time while 
preserving accuracy. According to Eq. (5), the 
feature matrix F comprises feature vectors fn, which 
represent the variable data sequence for each 
feature vector, f. It is essential to normalize the 
variables following the procedure outlined in Eq. 

(6) before proceeding with the principal component 
analysis:

 	 ...(6)

where μn is the mean, Sn is the standard deviation of 
the sequence of the variable, Wn. Then, correlation 
coefficient matrix can be worked out by working out 
the variables correlation coefficient in the feature 
vector as:

 	 ...(7)

Subsequently, all the eigenvalues, denoted as λi 
(where i = 1, 2, …, n), of the correlation coefficient 
matrix, C, along with their eigenvectors, [ei1, ei2, …, 
ein], are calculated. These eigenvectors are then 
used to form a set of m new indicator variables, as 
illustrated:

  ...(8)

where pcn is the nth principal component. The 
contribution rate of each principal component signifies 
the impact on the variability of the target features.  
To distill the most crucial information and streamline 
the feature vectors, we opt to select the first few 
principal components with the highest contribution 
rates rather than retaining the original features.  
In Fig. 7, the initial 10 principal components of WC 

Fig. 6: WCER features extracted from the belt conveyor system running under 
(a) normal condition and (b) malfunctional condition
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and WCER features are displayed, revealing that the 
cumulative contribution rate of the first 5 principal 
components (PCs), denoted as [pc1, pc2, …, pc5], 

amounts to approximately 1. Consequently, these 
5 PCs were chosen for subsequent classification 
tasks.

Fig. 7: Selected PCA plots of 10 PCs for (a) WC and (b) WCER features

Classification of Acoustic Feature
Following the simplification of features, we employed 
the streamlined WC and WCER features of the signal 
for target classification. Our study primarily utilized 
the Support Vector Machine (SVM) as a classifier 
to evaluate the effects of feature simplification 
and the wavelet feature extraction (WFE) method.  
In multidimensional space, the SVM's core principle 
involves treating a multi-variate feature as an 
independent point and then determining the optimal 
hyperplane for classifying these independent 
points using training data. The SVM employed the 
C-support-vector classifier (C-SVC) from LIB-SVM.12 
The formular of the C-SVC function is expressed as,

 	 ...(9)

s u b j e c t  t o  t h e  c o n s t r a i n t s 
 whe re   

and i=1,.., Nt, with Nt representing the training vectors 
number. Here yi is the class label associated with 
the feature vector and fi denotes the training sample 
feature vector. The feature vector fi was mapped to a 
high-dimensional space via the function Ø(fi), and R, 
set to 1 in this study, is the regularization parameter.

Additionally, the function for the classification of a 
feature f, is expressed as:

   ...(10) 

The labels of the class are represented as either 1 
or −1, representing different types of targets, such 
that yi ϵ {1, −1}. Additionally, we applied a radial basis 
function (RBF) kernel13, with the following the format:

 	 ...(11)

where the γ is set at 0.5, and the SVM classifier 
was trained by the feature data from both normal 
and malfunctional runs. Following training, the SVM 
classifier was employed to classify a real data-set 
comprising 1600 signal segments.

Performance of WCER Method
The WC and WCER feature-based methods were 
evaluated based on their performance, considering 
both time consumption and accuracy. Accuracy was 
quantified using the following definition:

 	
...(12)

The average classification accuracy was computed 
for both the original features and the features after 
dimension reduction, providing an assessment of 
the impact of feature simplification. The summarized 
results are presented in Table 1.
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The WCER feature extraction, coupled with 
simplification methods, effectively captures target 
features within the signals. As displayed in Table 1, 
the time required for classifying belt run data using 
the WCER feature extraction method is marginally 
longer compared to the WC feature method. 
However, the classification accuracy significantly 
improves, reaching approximately 96%, reflecting an 
approximate 6% enhancement. Furthermore, when 
applying PCA simplification to the WCER feature 
vectors, the time consumption for feature extraction 
reduces almost threefold, without compromising 
the accuracy of target classification. The simplified 
WCER features based average classification 

Table 1: Comparison of the results of each method.

Parameters	 WC Feature	 WCER Feature	 WCER Feature
	 with PCA	 without PCA	 with PCA
	 Simplification	 Simplification	 Simplification

Time Consumption of Feature Extraction	 67.93s	 227.82 s	 74.22 s
Time Consumption of SVM classification	 1.63 s	 0.29 s	 0.24 s
Average Classification Accuracy	 89.33%	 96.52%	 96.40%
Average Accuracy for Normal Condition	 83.59%	 91.81%	 92.40%
Average Accuracy for Malfunctional Condition	 96.96%	 98.98%	 98.02%

accuracy was only 0.12% lower than that of the 
non-simplified features. This slight difference can 
be attributed to the removal of redundant elements 
during the simplification process, which had no 
discernible effect on the target signal overall 
characteristics. Fig. 8 illustrates the relationship 
between accuracy and the quantity of feature vectors 
required for classifier training. Notably, WCER 
feature vectors outperform WC when employing 
an identical number of feature vectors. However, 
both WC and WCER accuracy tend to plateau after 
approximately 500 feature vectors used for classifier 
training.

Fig 8: The average classification accuracy achieved at varying 
levels of training with different numbers of signal segments.

Additionally, the FFT-based feature extraction 
methods were notably faster, with an average time 
consumption approximately 3 to 5 seconds shorter 
than that of the WCER method. However, they 
exhibited a significantly lower average classification 
accuracy, with an 8.2% reduction compared to the 

WCER method. This difference can be attributed to 
the fact that the FFT-based method only extracts 
the energy of the target signal low-frequency band 
for classification, while the WCER method utilizes 
all spectral energy characteristics within the signal 
for effective classification. Additionally, the WCER 
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method required less time for feature extraction 
from the target acoustic signal compared to the 
FFT-based method, as wavelet decomposition is 
more time-efficient than performing FFT operations 
on the same signal sequence. Moreover, the WCER 
method extracts fewer signal features compared 
to the FFT method, leading to reduced time for 
processing subsequent target classification.

Conclusion
In this paper, we proposed a non-invasive acoustic 
monitoring technique designed for industrial belt 
conveyors. A feature extraction method based 
on wavelet transform and WCER is presented. 
The acoustic WCER feature extraction method is 
employed for SVM classification after simplifying 
the target signal features using the PCA method. 
This study evaluates both time consumption and 
target classification accuracy. Experimental results 
demonstrate that the WCER feature extraction 
coupled with simplification approach, efficiently 

and accurately captures target features and 
monitors conveyor conditions. This approach 
ensures high classification accuracy, reduced time 
consumption, and a manageable number of feature 
vectors necessary for classifier training, making it 
a promising candidate for belt conveyor condition 
monitoring.
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