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Abstract
We present a review on one of the latest developments in the field of 
dynamical systems, the nonlinear Targeted Energy Transfer (TET). The 
great significance of the phenomenon lies in the fact that the systems in 
which Nonlinear TET occurs present a form of self-tuning and can transfer 
energy over a wide variety of frequencies (resonances). This makes 
nonlinear TET particularly suitable in practical applications where it is 
necessary to extract energy from multiple ways of oscillation. Dynamical 
systems where nonlinear TET occurs are systems with different time 
scales and are singular. This property allows us to study such systems 
with the use of singular perturbation theory. It has been shown that 
Nonlinear TET is related to the bifurcation of the Slow Invariant Manifold 
of such systems and their slow flow.
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Introduction
Systems that evolve depending on time are called 
Dynamical Systems. An such systems can be seen 
in many different scientific fields as mechanics and 
oscillations, biology, economy and others.1

Dynamical systems were introduced in Newton’s 
laws. Especially, by Newton’s second law that states 
that the rate of change of momentum of a body is 
directly proportional to the force applied and in its 
direction.

Since then a huge work has been done by several 
scientists as Poincaré, Lyapunov, Birkhoff, Smale 

and others. The detection of deterministic chaos23 
firstly by Poincaré and then, with the help of 
computers, by Lorenz opened a new era in the field 
of dynamical systems.

Chaos theory gave us a new perspective on 
approaching and understanding physical reality. A 
new window in understanding complex systems and 
behaviors was opened.

Dynamical systems and chaos concern mainly 
nonlinear systems of differential equations and 
nonlinear mappings and is a vital subject of Applied 
Mathematics. The authors usually use first order 
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differential equations since there exist theorems that 
guarantee the existence and uniqueness of solutions 
of these equations.

Dynamical systems are a field of applied mathematics 
and physics that is still developing. In this review 
article we present one of the latest developments 
in the field of dynamical systems: The nonlinear 
Targeted Energy Transfer(TET).

Nonlinear TET phenomenon has been extensively 
studied the last 20 years and many applications 
have been introduced. The great significance of 
the phenomenon lies in the fact that the systems in 
which nonlinear TET occurs present a form of self-
tuning and can transfer energy over a wide variety 
of frequencies (resonances). This makes Nonlinear 
TET particularly suitable in practical applications 
where we need energy to be extracted from multiple 
ways of oscillation.

Dynamical systems where nonlinear TET occurs are 
systems with different time scales and are singular. 
This property allows us to study such systems with 
the use of singular perturbation theory. It has been 
shown that nonlinear TET is related to the bifurcation 
of the Slow Invariant Manifold of such systems and 
their slow flow.

In the second section of this review article we 
present TET. We define the phenomenon, show 
its properties, its applications and some recent 
developments. In the third section we present 
basic theory of Invariant Manifolds and Singular 
Perturbation Theory. In the fourth section we highlight 
the relation between Nonlinear Energy Transfer 
Phenomenon, the bifurcations of Slow Invariant 
Manifolds and the behavior of the slow flow of such 
systems. Finally, we conclude in the fifth section.

Targeted Energy Transfer (TET)
The one way directed energy transfer from an 
initial system (donor) to a final system (receptor) 
is called Targeted Energy Transfer (TET). This 
procedure plays an important role in many physical 
phenomena. In biology, it plays a role in the process 
of energy transfer during the photosynthesis, in 
the proteins and DNA, In dynamics, on systems of 
nonlinear oscillators and breathers. In materials, on 
applications of superconductivity etc.

An important application of TET is the development 
of reliable and efficient energy harvesting devices 
which can collect energy from various external 
sources and make use of it. Such examples have 
been studied on mechanical systems that convert 
external oscillations into useful electrical energy.20

The main mechanism behind the TET is the 
resonances between the donor and the receptor. 
Particularly, in the case of a single mode energy 
attractors the energy transfer occurs in a restricted 
band of frequencies that are related with the given 
frequency of the system.

There is great importance in mechanical systems 
attached to local attachment possessing essential 
stiffness nonlinearity. The addition of such nonlinear 
attachments to the linear systems significantly affect 
the overall dynamical behavior. This happens due 
to the lack of preferential resonance frequency 
of the nonlinear attachment and leads it to have 
resonances over a broad frequency range.

This property of the local attachment with essential 
stiffness nonlinearity gives the ability to use such 
attachments as a Nonlinear Energy Sinks (NESs). 
Indeed, under certain initial conditions a one- way, 
irreversible (on the average) flow of the energy from 
the linear to the nonlinear attachment occurs. This 
phenomenon is called nonlinear TET.

The NES may participate in a set of transitive nonlinear 
resonances. Depending on the instantaneous energy 
level the NES transitionally tunes, for a finite time, and 
exports energy. Then “escapes” from this resonance 
because of energy dissipation and participates in 
another transitional tune with a different frequency 
level. The control parameter of this procedure is the 
instantaneous energy level of the system.

The NES can be adjusted in a way that it will firstly 
extract energy from rich energy states and then 
tuned in a way to extract energy from states with less 
energy. This makes it particularly suitable in practical 
applications where it is necessary to extract energy 
from multiple ways of oscillation.

The cause of this behavior of the NES lies in the fact 
that the addition of essential nonlinear attachment to 
the linear system introduces high degeneracy in the 
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dynamics of the system and give the ability for large 
bifurcations and complex dynamical phenomena.

Gendelman at 2001 was the first to observe and 
study the nonlinear TET. He studied the transient 
dynamics of a system of two degrees of freedom 
consists of a linear oscillator with damping coupled 
weakly with an essential nonlinear oscillator. On this 
system, he observed that for certain initial conditions 
of energy given in the linear oscillator (above a 
threshold) there was a TET to the nonlinear oscillator 
which absorbed most of the energy. More extensive 
study of the above phenomenon4,19 proved that the 
basic mechanism that controls TET was the 1:1 
transitional resonance between the linear and the 
nonlinear system. Also proved that the existence 
of dissipation is a prerequisite for TET, whereas, in 
the absence of damping beating phenomena are 
occurred, i.e. the energy is transferred from the 
linear to the nonlinear and back again to the linear 
oscillator.

The first experimental demonstration of a TET 
in a mechanical system took place in 2005 by 
McFarland, Bergman and Vakakis,14 where they 
studied a system consists of two, one linear and one 
nonlinear, one degree of freedom, oscillators with a 
stiff linear coupling and a dissipative NES. With the 
above experiment, the researchers noticed good 
theoretical and experimental agreement despite the 
strong nonlinearity and the transient nature of the 
dynamics of the problem. Indeed, the energy which 
was introduced in the linear oscillator transferred 
to the NES where it was locally dissipated. The 
results of the above experiment confirmed the 
existence of an energy threshold after which starts 
the phenomenon of TET.

The initial energy of the system (the amplitude of 
the oscillation) plays an essential role on the TET 
phenomenon. This fact is related to the mechanisms 
of energy transfer. Certain criteria that relates 
the initial energy (amplitude) with the TET have 
configured in different papers.18

An illustrative example. Let consider a system 
consists of a nonlinear y1 (t) oscillator coupled to a 
linear y2 (t)

		  ....(1)

where λ is the damping parameter, ω2 the frequency 
of the linear oscillator and C the nonlinear coefficient. 
The Hamiltonian of this system is

	 ....(2)

The instant energy of the nonlinear oscillator is 
given by 

		
....(3)

Considering zero initial displacements for both 
oscillators and zero velocity for the nonlinear 
oscillator and solve numerically the system of the 
differential equations for different values of the initial 
velocity Y of the linear oscillator and small values of 
the damping parameter we get the following results.

For initial value Y=0.5, for the parameters: λ=0.5, 
ω2

2=0.9, C=5, ϵ=0.05 the oscillations y1(t), y2(t) are 

Fig. 1:y1(t): continuous line, y2(t): dashed line.
Y=0.5,ϵ=0.05,C=5.0 and λ=0.5.

Fig. 2: Instant energy in the nonlinear oscillator 
for Y=0.5, ϵ=0.05,C=5.0 and λ=0.5.
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given by figure 1. From the diagram of the instant 
energy on the nonlinear oscillator (figure 2) we 
conclude that there is no energy transfer between 
the two oscillators.

The system continues to oscillate without having 
energy transfer from the linear to the nonlinear 
oscillator until the initial velocity takes the value 
Y=1.71. For this initial velocity the system oscillates 
in a way as it is shown in figure 3. Figure 4 shows 
that for this value of the initial velocity energy transfer 
between the two oscillators occurs.

For the initial value Y=5.0 the oscillations y1(t), y2(t)  
are given by figure 5. The diagram of the instant 

The comparison between the oscillations y1(t), y2(t)  
(figure 7) shows that the oscillations between the 
oscillators are in 1:1 resonance.

The above example shows that the phenomenon of 
the TET is related to systems initial energy. Moreover, 

Fig. 3: y1(t): continuous line, y2(t): dashed line.
Y=1.71, ϵ=0.05, C=5.0 and λ=0.5.

Fig. 4: Instant energy in the nonlinear oscillator 
for Y=1.71, ϵ=0.05,C=5.0 and λ=0.5.

energy in the nonlinear oscillator (figure 6) shows 
that the energy of the system is transferred in the 
nonlinear oscillator in a one direction way so there 
is TET from the linear to the nonlinear oscillator. The 
procedure of the energy transfer starts for time t=160. 

Fig. 5: y1(t): continuous line, y2(t): dashed line, 
Y=5.0, ϵ=0.05, C=5.0 and λ=0.5

Fig. 6: Instant energy in the nonlinear oscillator 
for Y=5.0, ϵ=0.05, C=5.0 and λ=0.5.

Fig. 7: y1(t): continuous line, y2(t): dashed line 
for Y=5.0, ϵ=0.05, C=5.0 and λ=0.5.
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TET occurs when there is a 1:1 resonance between 
the two oscillators. The conclusion from the above 
remarks is that to have TET the amount of energy 
that is given in the system must be enough to lead 
the system to a transient 1:1 resonance.

The phenomenon of TET may be interpreted by 
three mechanisms. The first mechanism is the basic 
(1:1) resonance between the donor and the receptor 
that leads to the basic TET. The second mechanism 
is the subharmonic resonance that leads to the 
subharmonic TET. The third mechanism is based 
on the excitation of the so-called impulsive periodic 
or semi-periodic orbits which leads through rhythmic 
phenomena to one of the previous two mechanisms.

TET occurs even in the case where the NES is 
attached to a system with external excitations. 
In this case the system, in addition to the known 
steady state oscillations with the weak variation 
of the responses, perform very special oscillations 
with large variations of the responses which are 
called Strongly Modulated Responses. These 
responses can be considered as the extension of 
the phenomenon of TET in systems with external 
excitations since the Strongly Modulated Responses 
can be considered as a form of iterative TET.

Applications of TET between linear and nonlinear 
oscillators have great interest.

In recent years, intense efforts have been done in 
this area. Papers have been published concerning 
seismic mitigation of energy in buildings and the use 
of the TET phenomenon to transfer and dissipate the 
energy to protect the buildings.

For example, Nucera et. al.15 report experimental 
validation of using nonlinear targeted energy 
transfers for seismic mitigation by experiments 
with a three- story shear-frame structure under 
seismic excitation in the form of two different 
historic earthquakes. The experimental design 
consists of either a single nonlinear energy sink or a 
combination of two nonlinear energy sinks attached 
at floors of the test structure. The researchers show 
that the combination of two NESs an NES with 
smooth stiffness nonlinearity at the top floor and 
a vibro- impact NES at the bottom floor of the test 

structure lead to dramatic reduction of the structural 
seismic response.

Tripepi et. al.17 show that TET can be applied 
to protect seismically excited eccentric steel 
structures. They considered a small-scale four-
story unsymmetrical- plan building, modeled as a 
twelve-degree-of- freedom-system. The floors were 
sufficiently rigid so that the frame can reasonably 
be considered as shear-type. Each floor has an 
additional eccentric mass and two NESs were placed 
on the top of it. They showed that the nonlinear 
attachments can engage in transient resonance with 
linear modes at arbitrary frequencies by generating 
TET of vibration from the primary structure to local 
attachment.

There are studies on application of the TET to 
stabilize drill-string systems. Viguie et. al.21 use 
a nonlinear Energy Sink to absorb the unwanted 
vibrational energy from a drill system.

Furthermore, there are studies on transferring of 
unused energy in automotive gearboxes systems7 
or for modal energy redistribution in automotive 
drivetrains. Motato et. al.13 used TET to mitigate 
the broadband torsional oscillations generated by 
compact high output power-to-weight ratio internal 
combustion engines and transmitted to lightly 
damped drivetrain systems.

The study of TET has not stopped. New phenomena, 
applications and implementations are published in 
several papers.

For example, Farid et. al.3 presented numeric 
evidence for the efficiency of the applicability of 
common pendulum as the NES for mitigation of 
impulsive excitations. They discussed that the 
pendulum NES can overcome one of the main 
shortcomings of more traditional NES designs, 
since it is able to mitigate excitation of a primary 
system in a relatively wide range of initial energies, 
because it can be captured into a resonance with 
primary oscillator both for rotational and oscillatory 
responses.

Saeed et. al.16 employed a novel rotating and vibro-
impact NESs for rapid and passive TET.
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Dekemele et. al.2 performed measures for the speed 
of both Targeted Energy Transfer and Resonance 
Capture Cascading and introduced the pumping 
time and the cascading time, respectively.

Invariant Manifolds
A powerful tool for analyzing high-dimensional 
singular systems is the Geometric Singular 
Perturbation Theory.6,22

A map f:X→Y of subsets of two Euclidean spaces is 
called Cr diffeomorphism if it is one to one and onto 
and if the inverse map f-1:Y→X is also Cr. 

A subset M⊂Rn  is called a Cr manifold of dimension 
m if:
•	 There exists a countable collection of open 

sets Va⊂Rn, a∈A, where A is some countable 
index set, with Ua≡Va∩M such that M=∪a∈AU

α.
•	 There exist a Cr diffeomorphism xa defined on 

each Ua which maps Ua onto some open set 
in Rm.

•	 The change of the coordinates in the 
overlapping region of two of the open sets 
Ua must also be Cr.

A manifold contained in the phase space of a 
dynamical system which has the property that its 
orbits remain on the manifold throughout the course 
of their dynamical evolution is called Invariant 
Manifold.

We consider the equations of the form 

		 ....(4)

where x∈Rn, y∈Rl, ε is a real parameter, f, g are C∞ 
on a set U×I, where U⊂Rn+l and I is an open interval 
containing 0.

With a change of time-scale, considering the slow 
time τ=ϵt, system (4) becomes 

				    ....(5)

System (4) is called fast and (5) is called slow 
system.

Let assume an l-dimensional manifold, possibly with 
boundary, M0 which is contained in the set {f(x,y,0)=0} 
and the fundamental hypothesis on M0 that as a set 
of critical points, the directions normal to the manifold 
will correspond to eigenvalues that are not neutral.

The manifold M0 is said to be normally hyperbolic if 
the linearization of (4) at each point in M0 has exactly 
l eigenvalues on the imaginary axis Re(λ)=0.

A set M is locally invariant under the flow form (4) 
if it has a neighborhood V so that no trajectory can 
leave M without also leaving V. 

In what follows we present a set of theorems that play 
important role in the geometric singular perturbation 
theorem.  

Fenichel’s Invariant Manifold Theorem I
If ϵ > 0 but sufficiently small, there exists a manifold 
Mϵ that lies within O(ϵ) of M0 and is diffeomorphic to 
M0. Moreover, it is locally invariant under the flow 
of system (4), and Cr, including in ϵ, for any r < +∞.

The manifold Mϵ is called the slow manifold and it is 
locally invariant.  

Fenichel’s Invariant Manifold Theorem II
If ϵ > 0, but sufficiently small, there exists stable 
manifolds Ws(Mϵ) and unstable manifolds Wu(Mϵ) that 
lie within O(ϵ) of, and are diffeomorphic to, the stable 
manifold Ws(M0) and to the unstable manifold Wu(M0) 
respectively. Moreover, they are each locally invariant 
under (4), and Cr, including in ϵ, for any r < +∞.  

Tikhonov Theorem
Consider the initial value problem 

	 ...(6)

For f and g, we take sufficiently smooth vector 
functions in x,y and t. 

1.	 We assume that a unique solution of the initial 
value problem exists and suppose this holds 
also for the reduced problem with solution 
x̃(t), ỹ̃(t).

			   ....(7)
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2.	 Suppose that 0=g(x,y,t) is solved by y=̃Φ(x,t), 
where Φ(x,t) is a continuous function and an 
isolated root. Also, suppose that ỹ=Φ(x,t) 
is an asymptotically stable solution of the 
equation dy/dτ=g(x,y,t) that is uniform in the 
parameters x∈D and t∈R+.

3. 	 y(0) is contained in an interior subset of the 
domain of attraction of y ̃=Φ(x,t) in the case 
of the parameter values x=x(0),t=0. Then, we 
have 

		  ....(8)

with d and L constants independent of ϵ.

The relation between slow flow, Invariant Manifolds 
and TET
Dynamical systems where TET occurs are singular 
because the mass of the NES is much smaller in 
comparison to the linear system.

As a result, Singular Perturbation Theory and 
Invariant Manifolds are important mathematical tools 
that help us study systems with TET.

The first to make such studies was Gendelman5 who 
showed that the rate of the dissipation of the energy 
is connected to the bifurcations of the invariant 
manifold.

In his work showed that the presence of bifurcations 
of the invariant manifold has rather essential effect 
on the dynamics of the system. Namely, passage 
through the bifurcation can destroy the regime of 
nonlinear normal mode and facilitate the energy 
dissipation. So, the damping coefficient should be 
chosen to ensure the possibility for bifurcations of 
the Nonlinear Normal Modes invariant manifold. 
Failure to do so will result in a loss of NES ability to 
dissipate the energy of vibrations.

Maaita et. al.8-10 studied an autonomous damped 
system of three degrees of freedom, composed of 
two linear coupled oscillators with an essentially 
nonlinear lightweight attachment 

		  ....(9)

where a,d,C,λ and ε<<1 are the parameters of the 
system. With the help of system reduction and the 
use of Complexification- Averaging Technique12 they 
derived the Slow Invariant Manifold (SIM) and the 
slow flow of the system and showed that they effect 
on the dynamics of the system.

In8 they showed that the SIM of the above system 
provides information about the asymptotic behavior 
of the orbits of the system. Specifically, the SIM of the 
system may have one or three branches depending 
on the slow time and the value of the damping 
parameter (figure 8). The corresponding bifurcations 
affect the dynamical behavior of the system which 
can change drastically. Indeed, Tikhonov’s theorem 
guarantees that, when the branches of the SIM are 
isolated and stable, the orbits of the system tend to 
these stable branches as long as they exist. Also, 
Fenichel’s theorems guarantee that the unstable 
branch of the SIM will have stable and unstable 
manifolds that will generically intersect transversally 
and lead to chaotic behavior.

a) = 1/√13

Fig. 8: The roots of the curve gives the 
number of SIM’s branches.  is the damping 

parameter.

b) = 1/√3
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Furthermore, the damping parameter and the 
number of the branches of the SIM play an essential 
role in the evolution of the dynamics of the system. 
The dynamics can be simple, as in the case where 
there is only one persisting stable branch of the SIM, 
or complicated, when bifurcations of the SIM occur, 
resulting in different phenomena such as relaxation 
oscillations, orbit excitations (figure 9) and complex 
structures of the basins of attraction, especially when 
the damping parameter is small.

Fig. 9: gray solid line: SIM, black dashed 
line:Amplitude of the oscillations of 

the nonlinear attachment.

Fig. 10: Regular and chaotic behavior of the 
slow flow for different cases of the SIM
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In9 they studied the dynamics of the slow flow of 
the system. The dynamics of the Slow flow and 
the structure of the SIM are connected. There are 
cases when the slow flow oscillates near the region 
of the SIM regularly and is attracted to a periodic 
orbit. When the SIM has saddle node bifurcations 
the slow flow has relaxation oscillation (i.e. the 
system oscillates regularly around one branch of the 
SIM and suddenly jumps to the other branch). It is 
interesting to note that when we have bifurcations of 

Fig. 11: One stable branch of the 
Slow Invariant Manifold

Fig. 12: The SIM bifurcates.

the SIM, in one hand, the system may have regular 
behavior and in the other hand, for different values 
of the parameters, may have chaotic behavior and 
therefore the slow flow becomes unpredictable 
(figures 10).

The relation between slow flow dynamics, the 
structure of the SIM and the energy transfer from 
the linear to the nonlinear oscillator has been 
investigated in.10 There, they concluded that the 
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bifurcations of the SIM and the dynamics of the slow 
flow play an important role in the energy transfer 
from the linear to the nonlinear oscillator and the 
dissipation of the total energy of the initial system.
When the SIM has no bifurcations, there is no energy 
transfer from the linear to the nonlinear oscillator and 
the energy dissipates smoothly (figure 11). When the 
SIM has bifurcations, then energy transfer occurs. 
Furthermore, when there is energy transfer to the 
nonlinear oscillator, the rate of the dissipation of the 

total energy of the system becomes larger (figure 
12). When the slow flow oscillates rapidly around 
the SIM, the energy is transferred to the nonlinear 
oscillator (figures 13). The amount of energy that 
transfers is related to the initial energy given to the 
system.

An important result is derived in11 where it has been 
proved that the SIM of systems as (9) may bifurcate 
only if the order of the nonlinear oscillator is an odd 
number, that is, k=2n+1, where n=1,2,....

Thus, we conclude that to have TET between the 
linear and the nonlinear oscillator that behaves as 
a Nonlinear Energy Sink, the nonlinear oscillators 
Must have an odd order.

Conclusions
Nonlinear TET is a phenomenon where energy may 
transfer between linear and nonlinear oscillators. 
This phenomenon can be very important in a 
wide variety of mechanical, electronic and other 
applications.

Such systems of coupled oscillators have the 
property that the nonlinear attachment has a small 
mass in comparison to the masses of the linear 
oscillators and therefore the problem is singular.

Singular perturbation theory, such as Fenichel’s and 
Tikhonov’s theorems, can be used to study systems 
where Nonlinear TET take place.

SIMs and the slow flow of such systems play 
important role on the dynamics of the systems and 
affect the energy transfer from the linear to the 
nonlinear oscillator and the rate of the total energy 
dissipation.

When the SIM has no bifurcations and the slow flow 
has regular orbits there is no energy transfer from 
the linear to the nonlinear oscillator.

In the contrary, Nonlinear Energy Transfer occurs 
when the SIM bifurcates, and the slow flow has a 
more complex oscillation.

Bifurcations of the SIM occurs where the nonlinear 
oscillator of the systems has an odd order nonlinearity.

Fig. 13: One stable branch of the SIM
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