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Abstract
A Grey Linear Programming problem differs from an ordinary one to the 
fact that the coefficients of its objective function and / or the technological 
coefficients and constants of its constraints are grey instead of real 
numbers. In this work a new method is developed for solving such kind 
of problems by the whitenization of the grey numbers involved and 
the solution of the obtained in this way ordinary Linear Programming 
problem with a standard method. The values of the decision variables in 
the optimal solution may then be converted to grey numbers to facilitate 
a vague expression of it, but this must be strictly checked to avoid non 
creditable such expressions. Examples are also presented to illustrate 
the applicability of our method in real life applications
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Introduction
It is well known that Linear Programming (LP) is 
a technique for the optimization (maximization or 
minimization) of a linear objective function subject 
to linear equality and inequality constraints. The 
feasible region of a LP problem is a convex polytope, 
which is a generalization of the three-dimensional 
polyhedron in the n-dimensional space Rn, where 
R denotes the set of the real numbers and n is an 
integer, n ≥ 2.

In 1975 the Soviet Leonid Kantorovich and the Dutch-
American T. C. Koopmans shared the Nobel prize in 

Economics for their work, at the end of the 1930’s , on 
formulating and solving LP problems. A LP algorithm 
determines a point of the LP polytope, where the 
objective function takes its optimal value, if such a 
point exists. In 1947 George B. Dantzic invented the 
SIMPLEX algorithm1 that for the first time efficiently 
tackled the LP problem in most cases. Note that 
earlier, in 1941, Frank Lamen Hitchcock gave a very 
similar to the SIMPLEX algorithm solution for the 
Transportation Problem. In 1948 Dantzic, adopting 
a conjecture of John von Neuman, who worked on 
an equivalent problem in Game Theory, provided a 
formal proof of the theory of Duality2. According to 
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the above theory every LP problem can be converted 
to a dual problem the optimal solution of which, if it 
exists, provides an optimal solution for the original 
problem.  A large breakthrough in the field came also 
in 1984, when Narendra Karmakar introduced a new 
interior-point method for solving LP problems. For 
more details about the history of LP the reader my 
look at3, while for general facts about the SIMPLEX 
algorithm we refer to Chapters 3 and 4 of 4.

LP, apart from mathematics, is widely used 
nowadays in business and economics, in several 
engineering problems, etc. Many practical problems 
of Operations Research can be expressed as LP 
problems. However, in large and complex systems, 
like the socio-economic, the biological ones, etc., 
it is often very difficult to solve satisfactorily the 
LP problems with the standard theory, since the 
necessary data can not be easily determined 
precisely and therefore estimates of them are used 
in practice. The reason for this is that such kind of 
systems they usually involve many different and 
constantly changing factors the relationships among 
which are indeterminate, making their operation 
mechanisms not clear. In order to obtain good results 
in such cases one may apply either techniques of 
fuzzy logic (Fuzzy LP, e.g. see 5-7, etc.) or of the grey 
systems theory (Grey LP, e.g. see 8,9, etc).

In this work we develop a new technique for solving 
grey LP problems. The rest of the paper is formulated 
as follows: In the second Section the background 
information is recalled about the Grey Numbers 
(GNs) which is necessary for the understanding of 
the paper. In the third Section our method for solving 
grey LP problems is developed and examples are 
presented illustrating it. Finally, the fourth Section is 
devoted to our conclusions and some hints for future 
research on the subject.
 
Grey Numbers
An investigated object with “poor” information is 
referred to as a grey system. An effective tool for 
handling the approximate data of a grey system is 
the use of GNs. In an earlier work we have presented 
the GNs and their arithmetic and we have applied 
them for assessing the mean performance of a group 
of objects (students, players, etc.) participating in a 
certain activity10. Therefore, here we shall recall only 

the information about GNs which is necessary for 
the understanding of the present work.

A GN is an indeterminate number whose probable 
range is known, but which has unknown position 
within its boundaries. Therefore, a GN, say A, can 
be expressed mathematically in the form

A ∈[a, b] = {x ∈R: a ≤ x ≤ b},

where R is the set of the real numbers If a = b, then 
A is called white number and if A∈ (−∞, + ∞), then 
A is called black number.

Let us denote by w(A) the white number with the 
highest probability to be the representative value of  
the GN A  [a, b]. The technique of determining the 
value of w(A) is called whitenization of  A.

One usually defines w(A) = (1- t)a + tb, with t in [0,1]. 
This is known as the equal weight whitenization. 
When the distribution of A is unknown, one takes t 
= 1/2, which gives that w(A) = 

2
a b+ .

For general facts on GNs we refer to the book11. 
Further, for the needs of the present paper we 
introduce the following definition:

The GN A [a, b] has Rank of Greyness(RoG) equal 
to x, with x in R, if, and only if b - a = x. We write 
then RoG (A) = x. Therefore, for a white number A 
we have RoG (A) = 0, whereas the RoG of a black 
number is defined to be equal to +∞.

Note that, if the values w(A)= y and RoG (A)= x 
are known, then the GN A∈[a, b] can be easily 
determined by solving the system of equations 
= y and b – a = x. For example, if w (A)= 4 and RoG 
(A)= 2, then a + b = 8 and b – a = 2, which gives 
that a = 3 and b = 5. 
  
A Method of Solving Grey LP Problems
The general form of a Grey LP problem is the 
following:

Maximize (or minimize) the linear expression F = A1x1 
+ A2x2 +….+ Anxn subject to constraints of the form 
xj ≥ 0, Ai1 x1 + Ai2 x2 +…..+ Ainxn ≤ (≥) Bi, where i = 1, 
2,…, m ,  j = 1, 2,,,, n and Aj, Aij, Bi are GNs.
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The proposed in this work method for solving a Grey 
LP problem involves the following steps:
•	 Whitenization of the GNs Aj, Aij and Bi.
•	 Solution of the obtained by the previous 

step ordinary LP problem with the standard 
theory.

•	 Conversion of the values of the decision 
variables in the optimal solution to GNs with 
the desired RoG.

The last step is not compulsory, but it is useful 
in problems of fuzzy structure, where a vague 
expression of their solution is often preferable than 
the crisp one.

The following examples illustrate the applicability of 
our method: in real life applications:

Example 1: A furniture-making factory constructs 
tables and desks. It has been statistically estimated 
that the construction of a group of tables needs 2-3 
working hours (w.h.) for assembling, 2.5-3.5 w.h. 
for elaboration (plane, etc.) and 0.75-1.25 w.h. for 
polishing. On the other hand, the construction of 
a group of desks needs 0.8-1.2, 2-4 and 1.5-2.5 
w.h. for each of the above procedures respectively. 
According to the factory’s existing number of workers, 
no more than 20 w.h. per day can be spent for the 
assembling, no more than 30 w.h. for the elaboration 
and no more than 18 w.h. for the polishing of the 
tables and desks. If the profit from the sale of a group 
of tables is between 2.7 and 3.3 thousand euros and 
of a group of desks between 3.8 and 4.2 thousand 
euros , find how many groups of tables and desks 
should be constructed daily to maximize the factory’s 
total profit. Express the problem’s optimal solution 
with GNs of RoG equal to 1.

Solution: Let x1 and x2 be the groups of tables and 
desks to be constructed daily. Then the problem is 
mathematically formulated as follows:

Maximize F = [2.7, 3.3]x1 + [3.8, 4.2]x2 subject to 
constraints x1, x2 ≥ 0 and
[2, 3]x1 + [0.8, 1.2]x2 ≤ [20, 20]
[2.5, 3.5]x1 + [2, 4]x2 ≤ [30, 30]
[0.75, 1.25]x1 + [1.5,2.5]x2 ≤ [16, 16]

The whitenization of the GNs involved leads to the 
following LP maximization problem of canonical 
form:

Maximize f(x1, x2) = 3x1 + 4x2 subject to the 
constraints x1, x2 ≥ 0 and
2.5x1 + x2 ≤ 20
3x1 + 3x2 ≤ 30
x1 + 2x2 ≤ 16

Adding the slack variables s1, s2, s3 for converting 
the last three inequalities to equations one forms the 
problem’s first SIMPLEX matrix, which corresponds 
to the feasible solution f(0, 0) = 0, as follows:

1 2 1 2 3

1

2

3

x x s s s | Const.

2.5 1 1 0 0 | 20 s
3 3 0 1 0 | 30 s
1 2 0 0 1 | 16 s

|
3 4 0 0 0 | 0 f(0,0)

 
 − − − − − − − 
 =
 = 
 =
 

− − − − − − 
 − − = 

Denote by L1, L2, L3, L4 the rows of the above matrix, 
the fourth one being the net evaluation row.  Since -4 
is the smaller (negative) number of the net evaluation 
row and 16/2 < 30/3 < 20/1, the pivot element 2 lies in 
the intersection of the third row and second column 
Therefore, applying the linear transformations 
L3→ 1/2 L3 = L΄3 and L1→ L1– L΄3 , L2→ L2– 3L΄3 , L4 → 
L4 + 4L΄3 , one obtains the second SIMPLEX matrix, 
which corresponds to the feasible solution f(0, 8) = 
32 and it is the following:

1 2 1 2 3

1

2

2

x x s s s | Const.

12 0 1 0 | 12 s
2

3 30 0 1 | 6 s
2 2
1 11 0 0 | 8 x
2 2

|
1 0 0 0 0 | 32 f(0,8)

 
 − − − − − − − 
 

− = 
 
 − = 
 
 =
 
 − − − − − − 
− =  

 *The profit depends upon the price of the wood, the salaries of the workers, etc.
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In this matrix the pivot element 3/2 lies in the 
intersection of the second row and first column, 
therefore working as above one obtains the third 
SIMPLEX matrix, which is:

Since there is no negative index in the net evaluation 
row, this is the last SIMPLEX matrix. Therefore 
f(4, 6)= 36 is the optimal solution maximizing the 
objective function. Further, since both the decision 
variables x1 and x2 are basic variables, i.e. they 
participate in the optimal solution, the above solution 
is unique.

1 2 1 2 3

1

1

2

x x s s s | Const.

4 30 0 1 | 4 s
3 2

21 0 0 1 | 4 x
3
10 1 0 1 | 6 x
3

|
20 0 0 1 | 36 f(4,6)
3

 
 − − − − − − − 
 

− − = 
 
 − = 
 
 − =
 
 − − − − − − 
 

=  

Converting the values of the decision variables in 
the above solution to GNs with RoG equal to 1 one 
finds that

x1∈ [3.5, 4.5] and x2∈[5.5, 6.5].

Therefore a vague expression of the solution states 
that the factory’s maximal profit corresponds to a 
daily production between 3.5 and 4.5 groups of 
tables and between 5.5 and 6.5 groups of desks.

However, considering for example the extreme values 
of the daily construction of 4.5 groups of tables and 
6.5 groups of desks, one finds that it needs 33 in total 
w.h. for elaboration, whereas the maximum available 
w.h. are only 30. In other words, a vague expression 
of the solution does not guarantee that all the values 
of the decision variables within the boundaries of the 
corresponding GNs are feasible solutions.

Example 2: Three kinds of food, say T1, T2 and T3, 
are used in a poultry farm for feeding the chickens, 
their cost varying between 38 - 42, 17 - 23 and 55 - 

65 cents per kilo respectively. The food T1 contains 
1.5 - 2.5 units of iron and 4 - 6 units of vitamins per 
kilo, T2 contains 3.2 - 4.8, 0.6 – 1.4 and T3 contains 
1.7 – 2.3, 0.8 – 1.2 units per kilo respectively.  It has 
been decided that the chickens must receive at least 
24 units of iron and 8 units of vitamins per day. How 
one must mix the three foods so that to minimize the 
cost of the food? Express the problem’s solution with 
GNs of RoG equal to 2.

Solution: Let x1, x2 and x3 be the quantities in kilos 
for each food to be mixed. Then, the problem’s 
mathematical model is the following:

Minimize 
F = [38, 42]x1 + [17, 23]x2 + [55, 65]x3 subject to 
the constraints x1, x2 , x3  0 [1.5, 2.5]x1+ [3.2, 4.8]
x2+ [1.7  2.3]x3 [24, 24],
[4, 6]x1+ [0.6, 1.4]x2+[0.8, 1.2]x3   [8, 8].

The whitenization of the GNs leads to the following 
LP minimization problem of canonical form:

Minimize f(x1, x2, x2) = 40x1 + 20x2 + 60x3 subject to 
the constraints x1, x2, x3  ≥ 0 and 
2x1+ 4x2+ 2x3 ≥ 24
5x1 + x2 + x3 ≥ 8

The dual of the above problem is: the following:
Maximize g(z1, z2) = 24z1 + 8z2 subject to the 
constraints z1, z2 ≥ 0 and 
2z1 + 5z2  ≤ 40
4z1 + z2 ≤ 20
2z1 + z2 ≤ 60

Working similarly with Example 1 it is straightforward 
to check that the last SIMPLEX matrix of the dual 
problem is the following:

1 2 1 2 3

2

1

3

z z s s s | Const.

2 1 200 1 0 | z
9 9 3
1 5 101 0 0 | z

18 18 3
1 4 1400 0 1 | s
9 9 3

|
4 52 400 10 200 0 0 | ( , )
9 9 3 3 3

g

 
 − − − − − − − 
 

= 
 
 − = 
 
 − − =
 
 − − − − − − 
 

=  
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Therefore the solution of the original minimization 
problem is fmin = f(4/9, 52/9, 0) = 400/3. In other 
words, the minimal cost of the chickens” food is 
400/3 ≈ 133 cents and will be succeeded by mixing 
4/9 ≈ 0.44 kilos from food T1 and 52/9 ≈ 5.77 kilos 
from food T2.

Converting the values of the decision variables in the 
above solution to GNs with RoG equal to 2 one finds 
that x1∈ [-5/9, 13/9], x2∈ [43/9, 61/9] and x3∈[-1, 1]. 
However, since x1, x2, x3 ≥ 0, one must finally take 
x1∈ [0, 13/9] and x3 ∈[0, 1].

Therefore a vague expression of the optimal solution 
states that the minimal cost of the chickens” food 
will be succeeded by mixing at most 13/9 ≈ 1.44, 
between 43/9 ≈ 4.77 and 61/9 ≈ 6.77 and at most 
1 kilos from each one of the foods T1, T2 and T3 

respectively.

However, considering the extreme values x1 = 13/9,  
x2 = 61/9 and x3 = 1, one finds that the cost of the 
food becomes equal to 13/9 *40+ 61/9*20 + 60 ≈ 253 
cents, which exceeds too much the minimal price 
of 133 cents. This means that the chosen RoG of 
the GNs is too large to provide a creditable vague 
expression of the problem’s solution. On the contrary, 
choosing for example the RoG to be equal to 0.5, one 
finds that x1∈ [5/36, 23/36], x2∈ [199/36, 217/36] and 
x3 [-1/4, 1/4]. Then  23/36*40 + 217/36*20 + 1/4*60≈ 
141cents, which is much closer to the minimal price 
of 133 cents.  In general, the smaller is the chosen 
RoG of the GNs the more creditable is the vague 
expression of the problem’s solution.

The required quantities in kilos from each kind of 
milk for producing a barrel of each of the three 
types of cheese are depicted, in form of GNs, in the 
following Table:

The cheese-maker’s profit from the sale of a barrel 
of cheese is 3 thousand euros for T1, 2 thousand 
euros for T3, whereas from the sale of a barrel of 
T2, the production of which becomes necessary for 
marketing reasons, there is a loss of 1 thousand 
euros.

At the end of a certain day the stock of the cow-milk 
is high, so that at least 200 kilos of it must be used 
the next day, whereas the stock of the sheep-milk 
is 150 kilos. Further, there exists a stock of 100 
kilos of expiring milk powder all of which must be 
spent the next day. Under the above conditions find 
with RoG equal to 0.2 which must be the next day’s 
production of cheese in order to maximize the profit 
from its sale.

Solution: Let x1, x2 and x3 be the barrels to be 
produced of cheese of the types T1, T2 and T3 

respectively. Then the problem is mathematically 
formulated as follows:

Maximize 
F = [3,3]x1 - [1,1]x2 + [2, 2]x3 subject to the constraints 
x1, x2, x3  ≥ 0 and
[1,3]x1 + [5,7]x2 + [0.5,1.5]x3 ≥ [200,200],
[3,5]x1 + [2,4]x2 + [1.5,2.5]x3 ≥ [150,150]
[1.8,2.2]x1 + [0.8,1.2]x2 + [0.6,1.4]x3 = [100,100].

The whitenization of the GNs leads to the following 
LP maximization problem of general form ǂ:

Maximize f(x1, x2, x2) = 3x1 - x2 + 2x3 subject to the 
constraints x1, x2, x3 ≥ 0 and
2x1 + 6x2+ x3 ≥ 200
4x1 + 3x2 + 2x3 ≥ 150
2x1 + x2 + x3  0020 = 100.

Adding the surplus variable s1 to the first inequality, 
the slack variable s2 to the second one and the 
artificial variables t1 and t2 to the first inequality 

Table 1: Required quantities of milk
	
	 T1	 T2	 T3

C	 [1, 3]	 [5, 7]	 [0.5, 1.5]
S	 [3, 5]	 [2, 4]	 [0.5, 1.5]
P	 [0.8, 1.2]	 [0.3, 0.7]	 [0.2, 0.8]

Example 3: A cheese-making company produces 
three different types of cheeseT1, T2 and T3 by mixing 
cow-milk (C), sheep-milk (S) and milk powder (P). 

*The grey data of Table 1 show that the production of a barrel 
of T1 requires quantities of cow-milk between 2 and 6 kilos and 
of sheep-milk and milk powder between 1 and 3 kilos, etc.

*It is recalled that a LP problem of general form differs from a 
problem of canonical form to the fact that there exists at least a 
constraint having the inverse sign of inequality (here  ), whereas 
there could also exist constraints with the sign of equality
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and the last equation one turns all the special 
constraints to equations. Next, adding by members 
the two equations containing the artificial variables, 
one forms the problem’s first generalized SIMPLEX 
matrix as follows:

1 2 3 1 2 1 2

1

2

2

1 2

x x x s s t t | Const.

2 6 1 1 0 1 0 | 200 t
4 3 2 0 1 0 0 | 150 s
2 1 3 0 0 0 1 | 100 t

3 1 2 0 0 0 0 | 0 f(0,0,0)

4 7 4 1 0 1 1 | t t 300

 
 − − − − − − − − − 
 − =
 = 
 =
 

− − − − − − − − − 
 − − =
 

− − − − − − − − − 
 − + = 

The rows of the artificial variables t1 and t2 are the, 
so called, anonymous rows of the above matrix. For 
the pivoting process, considering all the columns 
containing at least one positive number in the 
anonymous rows, we choose the one having the 
greatest positive number in the last row (of t1 + t2), i.e. 
the column of x2. Then, since 200/6 < 150/3 < 100/1, 
the pivot element 6 lies in the first row. Therefore, 
applying the proper linear transformations among the 
rows of the matrix one forms the second generalized 
SIMPLEX matrix as follows:

1 2 3 1 2 1 2

2

2

2

1 2

x x x s s t t | Const.

1 1 1 1 1001 0 0 | x
3 6 6 6 3

3 1 13 0 1 0 | 50 s
2 2 2

5 17 1 1 2000 0 1 | t
3 6 6 6 3

10 13 1 1 100 1000 0 0 | f(0, ,0)
3 6 6 6 3 3

5 17 1 1 2000 0 1 | =t t
3 6 6 6 3

 
 − − − − − − − − − 
 

− = 
 
 − = 
 
 =
 
 − − − − − − − − − 
 
− − − − = 

 
− − − − − − − − −


 − +
 





The pivot element 17/6 lies now in the intersection 
of the column of x3 and the row of t2 and the third 
generalized SIMPLEX matrix is the following:

Therefore, omitting the last row and the columns of 
the artificial variables one obtains the problem’s first 
canonical SIMPLEX matrix.

Next, continuing the process in the standard way 
one finally reaches the optimal solution 
fmax = f(125 250 175, ,

18 9 9
) = 575/18 .

1 2 3 1 2 1 2

2

2

3

1 2

x x x s s t t | Const.

4 3 3 1 5001 0 0 | x
17 17 17 17 17
36 7 7 9 2500 0 1 | s
17 17 17 17 17
10 1 1 6 4000 1 0 | x
17 17 17 17 17

35 5 5 13 300 500 4000 0 0 | f(0, , )
17 17 17 17 17 17 17

0 0 0 0 0 0 0 | 0=t t


 − − − − − − − − −


− =

 − − =

 − − =

 − − − − − − − − −


=


− − − − − − − − −
+



















 


Converting the optimal values of the decision 
variables to GNs with RoG equal to 0.2 one finds 
that x1∈ [6.84, 7.04], 
X2∈ [27.68, 27.88],  x3∈ [19.34, 19.54].

Therefore a vague expression of the problem’s 
optimal solution states that, if the next day’s 
production is between 6.84-7.04, 27.68-27.88 and 
19.34-19.54 barrels of the cheese T1, T2 and T3 

respectively, then the profit from their sale will be 
maximized to around 575/18 ≈ 31.9444 thousand 
euros.

Conclusion
A new technique was developed in this paper for 
solving Grey LP problems by the whitenization of the 
GNs involved in their statements and the solution of 
the ordinary LP problem obtained in this way with 
the standard theory. Real life examples were also 
presented to illustrate our method. In LP problems 
with fuzzy structure a vague expression of their 
solution is often preferable than the crisp one. This 
was attempted in the present work by converting 
the values of the decision variables in the optimal 
solution of the corresponding ordinary LP problem to 
GNs with the desired RoG.  The smaller is the value 
of the chosen RoG, the more creditable the vague 
expression of the problem’s optimal solution.

An analogous method could be applied for solving 
fuzzy LP problems and systems of equations with 
grey or fuzzy data and this is the main target of our 
future research on the subject.
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