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Abstract
An exact analytical and approximate solution of the relativistic and non-
relativistic wave equations for central potentials has attracted enormous 
interest in recent years. By using the basic Nikiforov-Uvarov quantum 
mechanical concepts and formalism, the energy eigenvalue equations and 
the corresponding wave functions of the Klein–Gordon and Schrodinger 
equations with the interaction of Modified Hylleraas-Hulthen Potentials 
(MHHP) were obtained using the conventional Pekeris-type approximation 
scheme to the orbital centrifugal term.The corresponding unnormalized 
eigen functions are evaluated in terms of Jacobi polynomials.
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Introduction
Quantum mechanical Wavefunctions and their 
corresponding eigenvalues give significant 
information in describing various quantum systems1-3. 
Bound state solutions of relativistic and nonrelativistic 
wave equation arouse a lot of interest for decades. 

Schrodinger wave equations constitute nonrelativistic 
wave equation while Klein-Gordon and Dirac 
equations constitute the relativistic wave equations1–5. 
The quantum mechanical interacting potentials 
(MHHP) can be used to compute and predict the 
bound state energies for both homonuclear and 
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heteronuclear diatomic molecules. Other potentials 
that have been used to investigate bound state 
solutions are as follows: Coulomb, Poschl-Teller, 
Yukawa, Hulthen, Hylleraas, pseudoharmonic, 
Eckart and many other potential combinations6–13. 
The aforementioned potentials are studied with some 
specific quantum mechanical methods and concepts 
like the following:Wentzel, Kramers, and Brillouin 
known as the WKB approximation, asymptotic 
iteration method, Nikiforov-Uvarov method, formular 
method, supersymmetric quantum mechanics 
approach, exact quantization, and many more14–24.

In theoretical physics, the shape form of a potential 
plays a significant role, particularly when investigating 
the structure and natureof the interaction between 
systems. Therefore, our aim, in this present work, 
is to investigate approximate bound state solutions 
of the Klein-Gordon and Schrodinger equations 
with newly proposed Modified Hylleraas-Hulthen 
potential (MHHP) using the conventional parametric 
Nikiforov-Uvarov (NU) method. The solutions of 
this equation will definitely give us a wider and 
deeper knowledge of the properties of molecules 
moving under the influence of the mixed interacting 
potentials which is the goal of this paper. The 
parametric NU method is very convenient and does 
not require the truncation of a series like the series 
solution method which is more difficult to useThis 
article is divided into five sections. Section 1 is the 
introduction; Section 2 is the brief introduction of 
Nikiforov-Uvarov quantum mechanical concept. In 
Section 3, we presented the angular solutions to 
Klein-Gordon and Schrodinger wave equations using 
the proposed potential and obtained both the energy 
eigenvalue and their corresponding normalized. We 
gave a brief discussion and conclusion in sections 
4 and 5 respectively.

Theory of Parametric Nikiforov-Uvarov Method
The parametric form is simply using parameters 
to obtain explicitly energy eigenvalues and it is still 
based on the solutions of a generalized second order 
linear differential equation with special orthogonal 
functions. The NU is based on solving the second 
order linear differential equation by reducing to a 
generalized equation of hyper-geometric type. This 
method has been used to solve the Schrödinger, 
Klein–Gordon and Dirac equation for different kind of 

potentials24-31. The second-order differential equation 
of the NU method has the form.

	 ....(1)

Where σ(s) and ¯σ(s) are polynomials at most 
second degree and τ ̃(s) is first degree polynomials.
The parametric generalization of the N-U method 
is given by the generalized hypergeometric-type 
equation

	
 			   ....(2)

Thus eqn. (2) can be solved by comparing it with 
equation (3) and the following polynomials are 
obtained

τ ̃(s) = (c1-c2s), σ(s) = s(1-c3s), ¯σ(s) = -ϵ1s2  + ϵ2s-ϵ3 	

			   ....(3)

The parameters obtainable from equation (4) serve 
as important tools to finding the energy eigenvalue 
and eigenfunctions. They satisfy the following sets 
of equation respectively

c2n – (2n+1) c5 + (2n+1) (√c9 + c3√c8) + n(n-1)c3 + c7 

+ 2c3c8 + 2√(c8c9) = 0			   ....(4)

(c2-c3 )n + c3n
2  – (2n+1)c5 + (2n+1) (√c9  + c3√c8) + c7 

+ 2c3 c8 + 2√(c8 c9) = 0			   ....(5)

While the wave function is given as

	
 					     ....(6)

Where

c4 = 1/2 (1- c1), c5 = 1/2 (c2- 2c3), c6 = c5
2 + ϵ1, c7  = 2c4 

c5 - ϵ2, c8 = c4
2 + ϵ3,

 
c9 = c3c7 + c3

2 c8 + c6, c10 = c1 + 2c4 + 2√c8, c11 = c2-2c5 

+ 2(√c9 + c3√(c8 )

c12 = c4 + √c8, c13 = c5- (√c9 + c3√c8)		  ....(7)

and Pn is the orthogonal polynomials.
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Solutions of the Wave Equations

Solutions of the Klein-Gordon Equation
The Klein-Gordon Equation29 with vector V(r), 
potential in atomic units (ħ = c = 1) is given as

	
 					     ....(8)

Where E,M,l and V(r) are the Energy, reduced mass, 
angular momentum and potential

The Modified Hylleraas Potential
The Modified Hylleras Potential as proposed by ref.32 
is given as:

		             .....(9a)

wherea and b are Hyllera as potential screening 
parameterswhile V_ois the potential depth and  S is 
the transformation, thus

S = e-2αr				               .....(9b)

Eqn. (9b) is the relationship between S and r, the 
so-called transformation!

The Hulthen Potential
The Hulthen potential is one of the important short-
range potentials, which behaves like a Coulomb 
potential for small values of r and decreases 
exponentially for large values ofr 33. The Hulthen 
potential in it simplest form is given as:

			               ....(10)

Where Vo and S are the potential depth and the 
transformation parameter respectively.

The Modified Hylleraas-Hulthen Potential
The Modified Hylleraas-Hulthen potential is our 
newly proposed interacting potential which is formed 
by combining eqns.(9) and (10) to get eqn.(11) 
given as:

	             ....(11)

Where all the parameters have their usual 
meaning Substitute eqn. (11) into eqn. (8) gives: 

 	
				    ....(12)

Applying the Pekeris-like approximation given as 1/
 25-31, to eq. (12) enable us completely solve 

eq. (8).

Again, applying the transformation s=e-2αr to get the 
form that NU method is applicable, equation (8) gives 
a generalized hypergeometric-type equation as

 	
				    ....(13)

Where

	
				    ....(14)

 

				    ....(15)

Now using equations (6), (14) and (15) we obtain 
the energyeigen spectrum of the newly proposed 
interacting potential (MHHP) given as:

    ...(16)

The above equation can be solved explicitly and the 
energyeigen spectrum of the Klein-Gordon equation 
with MHHP becomes

 	
				    ....(17)

Solutions of the Schrodinger Equation
The l-State Schrodinger Equation27 with vector V(r), 
potential is given as

 

				    ....(18)
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Where E,V(r),μ and l are the energy, potential, 
reduced mass and angular momentum respectively 
Substitute eqn. (11) into eqn. (18) we have

 

				    ....(19)

Applying the Pekeris-like approximation given as 
 25-31, to eq. (19) enable us completely solve 

eq. (18).

Again, applying the transformation s=e-2αr to get the 
form that NU method is applicable, equation (18) 
gives a generalized hypergeometric-type equation 
as

 
....(20)

Where
  	

				    ....(21)

 

				    ....(22)

Similarly, using equations (6), (21) and (22) we obtain 
the energyeigen spectrum of the newly proposed 
interacting potential (MHHP) for Schrodinger 
equation given as:

        ....(23)

The above equation can be solved explicitly and the 
energyeigen spectrum of Schrodinger equation with 
MHHP becomes

 

				    ....(24)

Wave Functions
We now calculate the radial wave function of the 
MHHP as follows

ρ(s)=su (1-qs)v	 ....(25)

Where
u = b2 -B-H-K-p, and v = 2√(b2 - P)

Xn (s) = pn
(u,v) (1-2s),	 ....(26)

φ(s) = su ⁄ 2 (1-s)1+v ⁄ 2	 ....(27)

Using equation (6) we get the function χ(s) as

χ(s) = Pn
(U,V) (1-2s),		  ....(28)

Where Pn
(U,V) are Jacobi polynomials

Lastly,

φ(s) = sc12 (1- c3s) -c12 - c13 / c3	 ....(29)
				  
And using equation (6) we get

φ(s) = sU ⁄ 2 (1-s)V-1⁄ 2,	 ....(30)

We then obtain the radial wave function from the 
equation

Rn
 (s) = Nn φ(s) χn (s),				  

						    
As
Rn (s) = Nns

U ⁄ 2 (1-s)(V-1) ⁄ 2 Pn
(U,V) (1-2s),           ....(31)

Where n is a positive integer and N_n is the 
normalization constant

Discussion
In this section, we are going to consider certain case 
of potential evaluation to enable check the behavior 
of the obtained bound state solutions:

When Vo=0, eqn. (24) is reduced to l-state solution 
of the Schrodinger equation with no potential 
interaction:

    

				    ....(32)

Similarly, eqn (17) is also reduced to l-state solution 
of the Klein-Gordon equation in the absence of 
interacting potential
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				    ....(33)
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Conclusion
In this paper, we solved explicitly the Klein-Gordon 
and Schrodinger equations for the modified 
Hylleraas plus Hulthen potential for arbitrary states 
by using the parametric form of the Nikiforov-Uvarov 
method. By using the Pekeris-type approximation 
for the centrifugal term, we obtained approximately 
the energy eigenvalues and the unnormalized 
wave function expressed in terms of the Jacobi 
polynomials for arbitrary wave states. It is hope 
that the results we obtained in this research work 
could enlarge and enhance the application of the 
Hylleraas-Hulthen potentials (which is our newly 
proposed potentials) in the relevant fields of physics 
and atomic spectroscopy.
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